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A SELF-SIMILAR SOLUTION TO THE PROBLEM OF THE EXPANSION
OF A CYLINDRICAL COLUMN OF CONDUCTING GAS
IN A LONGITUDINAL MAGNETIC FIELD

A. N. Cherepanov and V. I. Yakovlev

ABSTRACT. Nonstationary radial motion of an infinitely long [14%
cylindrical column of conducting gas is considered in a time-
variable longitudinal magnetic field.

On the assumption of the proportionality of static pres-
sure of the plasma on the boundary of the column to the exter-
nal magnetic pressure, accurate solutions to a system of equa-
tions of magnetohydrodynamics are found by the method of vari-
able division. Some numerical calculations are performed and
the energy characteristics are computed for the interaction
process. Dependences of the ratio of the useful work perform-
ed by the gas in an infinite time interval to the initial
energy of the columm on the magnetic Reynolds number are pre-
sented. It should be noted that a similar method was employed
in [1], where, in addition to averaging the cross-sectional
temperature, the inertia of the medium is disregarded; the cal-
culation of inertia leads to the requirement of proportionality
of the static pressure to the magnetic pressure on the boundary
of the column.

A physically similar model can, for example, be interpret-
ed as the expansion of a compressed conducting gas column in a
nonconducting uncompressed fluid situated in a permeable cy-
linder with a certain radius R which is infinite with respect
to its axis of symmetry. Then the requirement of proportional-
ity of static pressure to magnetic pressure is reduced to the
condition of external pressure variation on the boundary of a
permeable cylinder with radius R according to a specific law,
which may be easily determined.

We shall make the following assumptions.

(1) The conductivity of the gas is finite and is determined by the tempera-
ture

s =(m) e
e .

(0.1)

—— -

(2) The gas is ideal, and viscosity and caloricity are not taken into ac-
count.

(3) Displacement currents are disregarded everywhere. In particular, it
is considered feasible to assign an arbitrary law of variation in intensity of
the magnetic field on the external boundary of an expanding cylindrical columm,

*Numbers in the margin indicate pagination in the foreign text.
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not considering the electromagnetic waves in the external nonconducting space.
The latter is valid if the rate of expansion is slightly less than the velocity
of light.

(4) A static pressure proportional to the external magnetlc pressute is
maintained on the external boundary of the column.

The last requirement is associated with the condition of self-similarity
of the problem in the sense of variable division.

1. Fundamental equations. Under assumptions (1)-(3), a system of magneto-
hydrodynamics equations in a cylindrical coordinate system has the following
form:
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Here H(r, t) and v(r, t) are the longitudinal and radial vector compon- /15
ents H* and v*, respectively. There are no other vector components X and v
(d/dz = 0, d/d® = 0). We shall seek a solution which satisfies the condition
of proportional expansion, i.e.,

—d
#”("v t) = :z) ﬂ (1.2)

where a(?) is the unknown law of motion of the boundary of the cylindrical col-
umn.

We shall introduce the following notations:

I

(1.3)

The following scales have been adopted here for dimensionless quantities:

HO is the field intensity on the boundary of the column at the initial moment

of time; ao is the initial radius of the column; TO is the temperature on the

boundary of the column at the initial moment of time; UO is the characteristic

*Translator's note: These are printed in boldface in the Russian text.



velocity; o, is the conductivity at temperature T We shall present equations

0
(1.1), €1.2) and (1.3) in the following form:
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(1.4)

The third equation of system (1.4) can be integrated. We then obtain

f@=®@wﬂm] (1.5)

Here &(&) is a certain function of §. Using (1.5) and introducing new
unknown functions

‘ﬁ (§e.®) = A2 (Db, (&, T), 0 (&,.1) = A%, (1.6)
the remaining equations can be written in the following form:
A" 1 a . h? oo™ 2nve 1 oh
AT ED(E) oF (p, T ‘ﬁ)’ 4.—0? A8-2n py (35) J
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We shall find the particular solution to system (1.7) in the following
form:

hED=T@Z®, €)=V OX®, nEIFS (1.8)
(i.e., the self-similar solution [1]); we shall then consider that
TO=1, VO=1 GO =1 (1.9)

It is easy to note that the division of the variables in equations (1.7)
is possible under the following condition:

: Tg (T) const==
4
Mmem ‘ (1.10)




The constant in this case is equal to 1 by virtue of (1.9) and the initial/16
condition-

RICES (-1

It follows from (1.10) that the ratio of static pressure to magnetic pres-
sure for each given particle in this case is a constant which does not depend on
time. This condition is satisfied if a pressure is maintained on the external
boundary of the cylindrical column which is proportional to the magnetic pres-
sure (assumption (4)).

After substituting (1.8) into system (1.7), using condition (1.10), and
dividing the variables, the following two systems of equations are obtained:

for the functions T(1), V(t), G(1), and A(T)

S V@MTRAT_ g
L AmMGE® T()y dv
26+2xn G (1) gy ;‘zrth.a (f)—.
A Ty (1.12)

for the functions X(£), Y(&), Z(&), and %(&)

.1 e 72(EN] — _ v ldaf & 477
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Here o, B, H, and § are certain constants. In view of the adopted scalar
quantities and the standardizing conditions (1.9) for functions of 1, the bound-
ary conditions for the space functions will be the following:

m X Bk =1 Y (8 lzm (1.14)

where g designates the ratio of static pressure to magnetic pressure on the
boundary of the column under consideration. On the basis of (1.9), the con-
stant ¢y from the last equatioms (1.12) and (1.13) should be equal to unity.

2. Integration of the systems of equations obtained. The unknown func-
tions should satisfy not only the systems of equations (1.12), but also an addi-
tional condition (1.10), which is necessary for obtaining the considered parti-
cular solution; therefore, the constants o, B, and u cannot be arbitrary. In-
deed, let us first examine the systems of equations for the functions of the
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variable t. In place of function G(1), in all equations (1.12) we shall substi-
tute its expression by A(t) and T7(t) from (1.10).

Then, for the unknowns T(t), V(%), and A(t), we will have a system of four
equations

xi.(.‘) a3 (-[) = qT3 (T)p e ?‘T A’z-szxn }T:T)\

i ;—Hm v T(v) =V»""_(f;1)_;l‘ @ (2.1)

The number of equations is greater than the number of unknowns; therefore,
the system can be compatible only in the presence of definite relationships be-
tween the constants a, B, and u. In order to obtain these relationships, we
shall examine the last three equations of system (2.1); we then have

(1—-x)2nB (1~—u)amp

T (z) = [A(v)] 3, V (t) = [A(x)] ¥+ } (2.2)
‘U—x)2n ,, - IMBExn—1$RNITEN)

g MO =(h@T e ‘J (2.3)

We shall differentiate the last equation and write it in the following /
form:
I=ctig, - EeT ‘ mB(4xn—3)-+-pid—en)
AV ()= 2B — i [2n8 (2xn — 1)+ p (1 — 2n)] [A ()] mp—p }, (2.4)

H1—%x)2np

-——— *

Substituting 7(t) from (2.2) into the first equation of system (2.1), we
obtain another equatlon for A(1)

T F0=x) g
‘ A'(r)~'al'”“ i (2.5)

For compatability of system (2.1), equations (2.4) and (2.5) should be
identical. It is necessary to consider the 2 cases separately.

First case: o # 0. We shall equate the exponents with respect to A, and
also the constant factors in the right-hand sides of these equations (2.4) and
(2.5).

As a result, we obtain

T e

ﬁ”’m+">L‘“m_1. T L 1 (2.6)

The expression for B was used in this case to derive the expression for a.



Thus, from the three constants o, B, and u, only one of them will be inde-
pendent. From equation (2.3) and conditions (1.11) and (2.6), we have

- ST e
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It follows from equations (2.2) that
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T (x) = A1y, Vi(t)=»A anyd (2.8)

The independent constant p in (2.7) is expressed by the dimensionless ini-
tial velocity k = A"(0).

Second case: o = 0. The identity of equations (2.4) and (2.5) requires
that the constant factor in the right—-hand side of equation (2.4) be equal to
0. There are two possibilities for this.

The first possibility, 2nB — p = 0, leads to a trivial solution, i.e.,
A'(t) = 0. The second one, 2nB8 (2xn — 1) + p (1 — 2n) = 0, gives

= | @
Here
;.‘(1:);_—‘_1+k1', k=_2,i"—'1 (2.10)
: T Tm T e (2.11)
yrm=w”£>ym*#*2§

Thus, the system of equations for functions of t is completely solved.

As follows from (2.8) and (2.11), the solution obtained is characterized
by the fact that the external magnetic field (i.e., the magnetic field on the
external surface of the column) does not remain constant, but drops as the radi-
us of the column increases. Indeed,

T (). f{"‘ when @=0(0=—@n+1)/m) -
F® ™13 when @%0 (0=—(2n+2)/(28 +1))

3. Solution to system of equations (1.13) for space functions. First A8
case: o = 0, From the first equation of system (1.13), when o = 0, and under
the boundary conditions (1.14), we have

YO =0—Z0,

a=1+4q| (3.1)




From the third equation of system (1.13), using (3.1), we obtain

X0 - Bty - (& o

PR £ e e s e me

We shall substitute this expression into the second equation of system
(1.13); using (2.9), we obtain

A I ' ———
WtEis (@P—g& =0 (5= 2+‘5,.—_”,1‘)7{ (3.3)

The boundary conditions for this equation are expressed in the following
form:

201 E| =) =l ] <

The second condition is obtained from the third equation of system (1.13)
and the boundary conditions (1.14) for the functions X(£) and Y(£&).

We shall introduce a new independent variable, £ = 1n £, for the solution
to equation (3.3); for the function u(x) = 2(&), we obtain

; __ ’ u ¥ .
Balatadil ?41:31_(?7 =

This equation does not contain a clearly independent variable x. There-
fore, we shall introduce a new function, ¥P(u) = u'; we then obtain the follow-
ing for the unknown P:

Sn — 14\ ‘
@ +.B q)==2 <P(1)=(’€‘”7&Tq) J (3.5)

Since x = 0 when £ = 1, the boundary condition is obtained from (3.4)
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The solution to equation (3.5) has the following form:

o M
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Since P = du/dx, we find the following from (3.6) and the condition that

u(0) = 1:
- —
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Hence, the sought solution to equation (3.3) is obtained, which satisfies

conditions (3.4)

(3.8)

The ratio k/v which enters here through the expression (3.7) for K is es-

sentially the magnetic Reynolds number, since

L} ”
k7 4Roesea’ (1) i

G

Having designated the value of 7 by Zowhen £ =0, from (3.8) and taking /19

into account (3.7), we have

v l ‘
L de 1/ 2un = pth 28
) e = NY Ty 0
- ¥ o (3.10)

This gives the dependence of Z0 on the magnetic Reynolds number Rm. By

using this relationship, the expression for Z(Z) can be written in the follow-

ing form:

1
7z \1{/, - _ i
=1 "'!%Ez.),“)) (\p (Z)».-§/<m) do, | (o) —(;j:m)

(3.11)

0, the system of equations for the space func-

Thus, for the case of o
tions also can be integrated to the end (the solution to Y(£) is given by for-

mula (3.1), by formula (3.2) for X(£), and the solution to ¢(£) is obtained from

the fourth equation of system (1.13)).

Second case: a # 0. The constants &, B, and u, in system of equations

(1.13), according to (2.6) and (2.7), are determined as single values by assign-
System (1.13) can not be ana-

ing the dimensionless initial velocity k = A'(0).
lytically integrated; therefore, we shall reduce it to a form suitable for nu-

merical solution on a computer,



To do this, we express the functions ¢(£) and X(§) from the last two equa-
tions of system (1.13) by Y(£) and Z(£); we then have

\:a.—-@)‘=%’;f~"‘»ng—,(%%)'.m‘ 0(@) - [z Y””"(D( )mj (3.12)

Substituting these expressions into the first two equations of system
(1.13), we obtain a system of two equations for the functions Y(£) and Z(%)

Y 5)  2ax
dE [E ] x+2m¢—1§z o
T
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(3.13)

We shall substitute the independent variable x = £2 and shall reduce equa-
tion (3.13) to the following form:

d'Y
;1?-2:7 = AZ, [Y + Z!] —l/ﬂyh-l/n (Z )_2/,|

=, D= k'(zn+1)""*"”‘() ("”“""“" ‘J (3.14)

o,

We shall introduce new unknown functions

I\P(z)='7—('?'), _<p(x)=z,J (3.15)

We then obtain a system of equations for the unknowns ¢(x), Z(x) and P(x)
from equations (3.14):

) ! . im . - l
4z, rdz =0, ._:_:?;- -D (_1_:;)!/ (Pm-x)/nv_,.,:rz%ﬁ(z‘:}"-.(A),J (3.16)

On the basis of (1.14) and (3.4) we have the following boundary conditions
for the unknown functions:

v @h= (k=

<|»

2’“2,;:";)'/')? (3.17)

E‘-.

Thus, the space functions Z(§), Y(£), ®(E), and X(£) in the case of a # 0 /2
are found by integrating system (3.15) using the conditions (3.17).

Some numerical calculations were performed and the energy characteristics
of the interaction process were computed, i.e., the amount of work performed
during the expansion of the column in opposition to the electrical body forces
(EBF), the Joule (heat) losses inside the conducting gas, and the variations in



the internal and kinetic energy. As an example, the figure illustrates some
values of the coefficient n as a function of the magnetic Reynolds number Rﬁ

(the circles correspond to the value of k¥ = 1.0; the triangles correspond to ’
k = 0.5). The coefficient n is defined as the ratio of useful work performed
over time, from ¢t = 0 to £ = », to the initial energy of the column, i.e.,

YT

=Wt U

. |

where A°° and QOo are the work in opposition to the EBF and the amount of Joule

losses in the indicated time interval, while WO and U0 are the kinetic and the

internal energy at the initial moment of time, respectively.

The expressions for the energy quanti-
I g ties 4_, Qm, W, and U are not given here
since they are easily obtained from the

Y.
;» . '(

Y 4

N L=, 1=l L

@9"?0 I"

——y

very sense of these quantities.

The dependences obtained for other
values of parameters ¥, n, ¢, and K in
other cases (o = 0 and o # 0) are analog-
ous to those given here, only the permissi-

ble interval of change of Rm (at certain

| f

0£ Z<£ 1) lies in a region of larger
values for small g, and therefore, the
values of n in this interval are positive
everywhere.

It is evident from the graphs that
for certain values of_Rm the difference

A_— € _ becomes negative, although the work A  performed in opposition to the
EBF is positive in this case. A similar phenomenon was obtained in [2] for a

case when there was no magnetic field inside the column at the initial moment

of time, and the intensity of the magnetic field on the boundary of the column
was not equal to zero.

The presented data indicate that a similar phenomenon may take place also
in the case of continuous initial distribution of the magnetic field inside and
on the boundary of the column (the initial distribution of the magnetic field in
this case is determined by the function Z(£)).

It should be emphasized that in this work, as well as in reference [2], all
the energy quantities refer to a time interval which begins at a certain "ini-
tial" moment, and the process of obtaining this initial state and its energy
characteristics is not considered.
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